A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “motor11”

This page shows the benchmarks results for the dataset instance “motor11”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -50.16.

Run time 1s

method value bound optimal accuracy
dd-ls0 -50.1629 -50.1637 yes 100.00%
dd-ls3 -50.1629 -50.1954 yes 100.00%
dd-ls4 -50.1629 -50.4658 yes 100.00%
fgmd inf -inf no
fm-bca -50.1629 -50.1629 yes 100.00%
fm -50.1629 -70.8786 yes 100.00%
fw -50.1629 -inf yes 100.00%
ga -50.1629 -inf yes 100.00%
hbp -50.1629 -51.1384 yes 100.00%
ipfps -50.1629 -inf yes 100.00%
ipfpu -48.9401 -inf no 91.30%
lsm -50.1629 -inf yes 100.00%
mp -50.1629 -50.1629 yes 100.00%
mp-fw -50.1629 -50.1629 yes 100.00%
mpm -44.2045 -inf no 73.91%
mp-mcf -50.1629 -50.1629 yes 100.00%
pm -30.6615 -inf no 47.83%
rrwm -50.1629 -inf yes 100.00%
sm -50.1629 -inf yes 100.00%
smac -47.3683 -inf no 91.30%

Run time 10s

method value bound optimal accuracy
dd-ls0 -50.1629 -50.1637 yes 100.00%
dd-ls3 -50.1629 -50.1954 yes 100.00%
dd-ls4 -50.1629 -50.1757 yes 100.00%
fgmd -50.1629 -inf yes 100.00%
fm-bca -50.1629 -50.1629 yes 100.00%
fm -50.1629 -70.8786 yes 100.00%
fw -50.1629 -inf yes 100.00%
ga -50.1629 -inf yes 100.00%
hbp -50.1629 -51.1384 yes 100.00%
ipfps -50.1629 -inf yes 100.00%
ipfpu -48.9401 -inf no 91.30%
lsm -50.1629 -inf yes 100.00%
mp -50.1629 -50.1629 yes 100.00%
mp-fw -50.1629 -50.1629 yes 100.00%
mpm -44.2045 -inf no 73.91%
mp-mcf -50.1629 -50.1629 yes 100.00%
pm -30.6615 -inf no 47.83%
rrwm -50.1629 -inf yes 100.00%
sm -50.1629 -inf yes 100.00%
smac -47.3683 -inf no 91.30%

Run time 100s

method value bound optimal accuracy
dd-ls0 -50.1629 -50.1637 yes 100.00%
dd-ls3 -50.1629 -50.1954 yes 100.00%
dd-ls4 -50.1629 -50.1757 yes 100.00%
fgmd -50.1629 -inf yes 100.00%
fm-bca -50.1629 -50.1629 yes 100.00%
fm -50.1629 -70.8786 yes 100.00%
fw -50.1629 -inf yes 100.00%
ga -50.1629 -inf yes 100.00%
hbp -50.1629 -51.1384 yes 100.00%
ipfps -50.1629 -inf yes 100.00%
ipfpu -48.9401 -inf no 91.30%
lsm -50.1629 -inf yes 100.00%
mp -50.1629 -50.1629 yes 100.00%
mp-fw -50.1629 -50.1629 yes 100.00%
mpm -44.2045 -inf no 73.91%
mp-mcf -50.1629 -50.1629 yes 100.00%
pm -30.6615 -inf no 47.83%
rrwm -50.1629 -inf yes 100.00%
sm -50.1629 -inf yes 100.00%
smac -47.3683 -inf no 91.30%

Run time 300s

method value bound optimal accuracy
dd-ls0 -50.1629 -50.1637 yes 100.00%
dd-ls3 -50.1629 -50.1954 yes 100.00%
dd-ls4 -50.1629 -50.1757 yes 100.00%
fgmd -50.1629 -inf yes 100.00%
fm-bca -50.1629 -50.1629 yes 100.00%
fm -50.1629 -70.8786 yes 100.00%
fw -50.1629 -inf yes 100.00%
ga -50.1629 -inf yes 100.00%
hbp -50.1629 -51.1384 yes 100.00%
ipfps -50.1629 -inf yes 100.00%
ipfpu -48.9401 -inf no 91.30%
lsm -50.1629 -inf yes 100.00%
mp -50.1629 -50.1629 yes 100.00%
mp-fw -50.1629 -50.1629 yes 100.00%
mpm -44.2045 -inf no 73.91%
mp-mcf -50.1629 -50.1629 yes 100.00%
pm -30.6615 -inf no 47.83%
rrwm -50.1629 -inf yes 100.00%
sm -50.1629 -inf yes 100.00%
smac -47.3683 -inf no 91.30%

Other Results for this Dataset

Accumulated results for whole dataset: motor

Results for individual instances of the dataset: