A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse9”

This page shows the benchmarks results for the dataset instance “house-sparse9”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -66.2455.

Run time 1s

method value bound optimal accuracy
dd-ls0 -66.2455 -66.2483 yes 100.00%
dd-ls3 -66.2455 -66.2474 yes 100.00%
dd-ls4 -49.8367 -73.1528 no 76.67%
fgmd inf -inf no
fm-bca -66.2455 -66.2455 yes 100.00%
fm -66.2455 -78.7915 yes 100.00%
fw 0 -inf no 0.00%
ga -66.2455 -inf yes 100.00%
hbp -66.2455 -66.613 yes 100.00%
ipfps -66.2455 -inf yes 100.00%
ipfpu -66.2455 -inf yes 100.00%
lsm -63.0393 -inf no 93.33%
mp -66.2455 -66.2455 yes 100.00%
mp-fw -66.2455 -66.2455 yes 100.00%
mpm -61.6377 -inf no 90.00%
mp-mcf -66.2455 -66.2455 yes 100.00%
pm -53.4274 -inf no 80.00%
rrwm -66.2455 -inf yes 100.00%
sm -66.2455 -inf yes 100.00%
smac -9.70379 -inf no 0.00%

Run time 10s

method value bound optimal accuracy
dd-ls0 -66.2455 -66.2483 yes 100.00%
dd-ls3 -66.2455 -66.2474 yes 100.00%
dd-ls4 -66.2455 -66.247 yes 100.00%
fgmd -66.2455 -inf yes 100.00%
fm-bca -66.2455 -66.2455 yes 100.00%
fm -66.2455 -78.7915 yes 100.00%
fw 0 -inf no 0.00%
ga -66.2455 -inf yes 100.00%
hbp -66.2455 -66.613 yes 100.00%
ipfps -66.2455 -inf yes 100.00%
ipfpu -66.2455 -inf yes 100.00%
lsm -63.0393 -inf no 93.33%
mp -66.2455 -66.2455 yes 100.00%
mp-fw -66.2455 -66.2455 yes 100.00%
mpm -61.6377 -inf no 90.00%
mp-mcf -66.2455 -66.2455 yes 100.00%
pm -53.4274 -inf no 80.00%
rrwm -66.2455 -inf yes 100.00%
sm -66.2455 -inf yes 100.00%
smac -9.70379 -inf no 0.00%

Run time 100s

method value bound optimal accuracy
dd-ls0 -66.2455 -66.2483 yes 100.00%
dd-ls3 -66.2455 -66.2474 yes 100.00%
dd-ls4 -66.2455 -66.247 yes 100.00%
fgmd -66.2455 -inf yes 100.00%
fm-bca -66.2455 -66.2455 yes 100.00%
fm -66.2455 -78.7915 yes 100.00%
fw 0 -inf no 0.00%
ga -66.2455 -inf yes 100.00%
hbp -66.2455 -66.613 yes 100.00%
ipfps -66.2455 -inf yes 100.00%
ipfpu -66.2455 -inf yes 100.00%
lsm -63.0393 -inf no 93.33%
mp -66.2455 -66.2455 yes 100.00%
mp-fw -66.2455 -66.2455 yes 100.00%
mpm -61.6377 -inf no 90.00%
mp-mcf -66.2455 -66.2455 yes 100.00%
pm -53.4274 -inf no 80.00%
rrwm -66.2455 -inf yes 100.00%
sm -66.2455 -inf yes 100.00%
smac -9.70379 -inf no 0.00%

Run time 300s

method value bound optimal accuracy
dd-ls0 -66.2455 -66.2483 yes 100.00%
dd-ls3 -66.2455 -66.2474 yes 100.00%
dd-ls4 -66.2455 -66.247 yes 100.00%
fgmd -66.2455 -inf yes 100.00%
fm-bca -66.2455 -66.2455 yes 100.00%
fm -66.2455 -78.7915 yes 100.00%
fw 0 -inf no 0.00%
ga -66.2455 -inf yes 100.00%
hbp -66.2455 -66.613 yes 100.00%
ipfps -66.2455 -inf yes 100.00%
ipfpu -66.2455 -inf yes 100.00%
lsm -63.0393 -inf no 93.33%
mp -66.2455 -66.2455 yes 100.00%
mp-fw -66.2455 -66.2455 yes 100.00%
mpm -61.6377 -inf no 90.00%
mp-mcf -66.2455 -66.2455 yes 100.00%
pm -53.4274 -inf no 80.00%
rrwm -66.2455 -inf yes 100.00%
sm -66.2455 -inf yes 100.00%
smac -9.70379 -inf no 0.00%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: