A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse64”

This page shows the benchmarks results for the dataset instance “house-sparse64”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -67.3393.

Run time 1s

method value bound optimal accuracy
dd-ls0 -67.3393 -67.4125 yes 100.00%
dd-ls3 -67.3393 -67.3405 yes 100.00%
dd-ls4 -60.9651 -71.7952 no 93.33%
fgmd inf -inf no
fm-bca -67.3393 -67.3393 yes 100.00%
fm -67.3393 -78.8422 yes 100.00%
fw 0 -inf no 0.00%
ga -67.3393 -inf yes 100.00%
hbp -67.3393 -67.3393 yes 100.00%
ipfps -67.3393 -inf yes 100.00%
ipfpu -67.3393 -inf yes 100.00%
lsm -67.3393 -inf yes 100.00%
mp -67.3393 -67.3393 yes 100.00%
mp-fw -67.3393 -67.3393 yes 100.00%
mpm -53.8813 -inf no 86.67%
mp-mcf -67.3393 -67.3393 yes 100.00%
pm -52.7519 -inf no 80.00%
rrwm -67.3393 -inf yes 100.00%
sm -67.3393 -inf yes 100.00%
smac -46.5259 -inf no 73.33%

Run time 10s

method value bound optimal accuracy
dd-ls0 -67.3393 -67.4125 yes 100.00%
dd-ls3 -67.3393 -67.3405 yes 100.00%
dd-ls4 -67.3393 -67.3413 yes 100.00%
fgmd -67.3393 -inf yes 100.00%
fm-bca -67.3393 -67.3393 yes 100.00%
fm -67.3393 -78.8422 yes 100.00%
fw 0 -inf no 0.00%
ga -67.3393 -inf yes 100.00%
hbp -67.3393 -67.3393 yes 100.00%
ipfps -67.3393 -inf yes 100.00%
ipfpu -67.3393 -inf yes 100.00%
lsm -67.3393 -inf yes 100.00%
mp -67.3393 -67.3393 yes 100.00%
mp-fw -67.3393 -67.3393 yes 100.00%
mpm -53.8813 -inf no 86.67%
mp-mcf -67.3393 -67.3393 yes 100.00%
pm -52.7519 -inf no 80.00%
rrwm -67.3393 -inf yes 100.00%
sm -67.3393 -inf yes 100.00%
smac -46.5259 -inf no 73.33%

Run time 100s

method value bound optimal accuracy
dd-ls0 -67.3393 -67.4125 yes 100.00%
dd-ls3 -67.3393 -67.3405 yes 100.00%
dd-ls4 -67.3393 -67.3413 yes 100.00%
fgmd -67.3393 -inf yes 100.00%
fm-bca -67.3393 -67.3393 yes 100.00%
fm -67.3393 -78.8422 yes 100.00%
fw 0 -inf no 0.00%
ga -67.3393 -inf yes 100.00%
hbp -67.3393 -67.3393 yes 100.00%
ipfps -67.3393 -inf yes 100.00%
ipfpu -67.3393 -inf yes 100.00%
lsm -67.3393 -inf yes 100.00%
mp -67.3393 -67.3393 yes 100.00%
mp-fw -67.3393 -67.3393 yes 100.00%
mpm -53.8813 -inf no 86.67%
mp-mcf -67.3393 -67.3393 yes 100.00%
pm -52.7519 -inf no 80.00%
rrwm -67.3393 -inf yes 100.00%
sm -67.3393 -inf yes 100.00%
smac -46.5259 -inf no 73.33%

Run time 300s

method value bound optimal accuracy
dd-ls0 -67.3393 -67.4125 yes 100.00%
dd-ls3 -67.3393 -67.3405 yes 100.00%
dd-ls4 -67.3393 -67.3413 yes 100.00%
fgmd -67.3393 -inf yes 100.00%
fm-bca -67.3393 -67.3393 yes 100.00%
fm -67.3393 -78.8422 yes 100.00%
fw 0 -inf no 0.00%
ga -67.3393 -inf yes 100.00%
hbp -67.3393 -67.3393 yes 100.00%
ipfps -67.3393 -inf yes 100.00%
ipfpu -67.3393 -inf yes 100.00%
lsm -67.3393 -inf yes 100.00%
mp -67.3393 -67.3393 yes 100.00%
mp-fw -67.3393 -67.3393 yes 100.00%
mpm -53.8813 -inf no 86.67%
mp-mcf -67.3393 -67.3393 yes 100.00%
pm -52.7519 -inf no 80.00%
rrwm -67.3393 -inf yes 100.00%
sm -67.3393 -inf yes 100.00%
smac -46.5259 -inf no 73.33%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: