A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse60”

This page shows the benchmarks results for the dataset instance “house-sparse60”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -67.0979.

Run time 1s

method value bound optimal accuracy
dd-ls0 -67.0979 -67.0985 yes 100.00%
dd-ls3 -67.0979 -67.101 yes 100.00%
dd-ls4 -54.9705 -71.7445 no 90.00%
fgmd inf -inf no
fm-bca -67.0979 -67.0979 yes 100.00%
fm -67.0979 -78.8602 yes 100.00%
fw 0 -inf no 0.00%
ga -67.0979 -inf yes 100.00%
hbp -67.0979 -67.1262 yes 100.00%
ipfps -67.0979 -inf yes 100.00%
ipfpu -67.0979 -inf yes 100.00%
lsm -67.0979 -inf yes 100.00%
mp -67.0979 -67.0979 yes 100.00%
mp-fw -67.0979 -67.0979 yes 100.00%
mpm -62.3296 -inf no 90.00%
mp-mcf -67.0979 -67.0979 yes 100.00%
pm -56.197 -inf no 86.67%
rrwm -67.0979 -inf yes 100.00%
sm -67.0979 -inf yes 100.00%
smac -46.1234 -inf no 73.33%

Run time 10s

method value bound optimal accuracy
dd-ls0 -67.0979 -67.0985 yes 100.00%
dd-ls3 -67.0979 -67.101 yes 100.00%
dd-ls4 -67.0979 -67.1068 yes 100.00%
fgmd -67.0979 -inf yes 100.00%
fm-bca -67.0979 -67.0979 yes 100.00%
fm -67.0979 -78.8602 yes 100.00%
fw 0 -inf no 0.00%
ga -67.0979 -inf yes 100.00%
hbp -67.0979 -67.1262 yes 100.00%
ipfps -67.0979 -inf yes 100.00%
ipfpu -67.0979 -inf yes 100.00%
lsm -67.0979 -inf yes 100.00%
mp -67.0979 -67.0979 yes 100.00%
mp-fw -67.0979 -67.0979 yes 100.00%
mpm -62.3296 -inf no 90.00%
mp-mcf -67.0979 -67.0979 yes 100.00%
pm -56.197 -inf no 86.67%
rrwm -67.0979 -inf yes 100.00%
sm -67.0979 -inf yes 100.00%
smac -46.1234 -inf no 73.33%

Run time 100s

method value bound optimal accuracy
dd-ls0 -67.0979 -67.0985 yes 100.00%
dd-ls3 -67.0979 -67.101 yes 100.00%
dd-ls4 -67.0979 -67.1068 yes 100.00%
fgmd -67.0979 -inf yes 100.00%
fm-bca -67.0979 -67.0979 yes 100.00%
fm -67.0979 -78.8602 yes 100.00%
fw 0 -inf no 0.00%
ga -67.0979 -inf yes 100.00%
hbp -67.0979 -67.1262 yes 100.00%
ipfps -67.0979 -inf yes 100.00%
ipfpu -67.0979 -inf yes 100.00%
lsm -67.0979 -inf yes 100.00%
mp -67.0979 -67.0979 yes 100.00%
mp-fw -67.0979 -67.0979 yes 100.00%
mpm -62.3296 -inf no 90.00%
mp-mcf -67.0979 -67.0979 yes 100.00%
pm -56.197 -inf no 86.67%
rrwm -67.0979 -inf yes 100.00%
sm -67.0979 -inf yes 100.00%
smac -46.1234 -inf no 73.33%

Run time 300s

method value bound optimal accuracy
dd-ls0 -67.0979 -67.0985 yes 100.00%
dd-ls3 -67.0979 -67.101 yes 100.00%
dd-ls4 -67.0979 -67.1068 yes 100.00%
fgmd -67.0979 -inf yes 100.00%
fm-bca -67.0979 -67.0979 yes 100.00%
fm -67.0979 -78.8602 yes 100.00%
fw 0 -inf no 0.00%
ga -67.0979 -inf yes 100.00%
hbp -67.0979 -67.1262 yes 100.00%
ipfps -67.0979 -inf yes 100.00%
ipfpu -67.0979 -inf yes 100.00%
lsm -67.0979 -inf yes 100.00%
mp -67.0979 -67.0979 yes 100.00%
mp-fw -67.0979 -67.0979 yes 100.00%
mpm -62.3296 -inf no 90.00%
mp-mcf -67.0979 -67.0979 yes 100.00%
pm -56.197 -inf no 86.67%
rrwm -67.0979 -inf yes 100.00%
sm -67.0979 -inf yes 100.00%
smac -46.1234 -inf no 73.33%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: