A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse55”

This page shows the benchmarks results for the dataset instance “house-sparse55”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -65.6533.

Run time 1s

method value bound optimal accuracy
dd-ls0 -65.6533 -65.658 yes 100.00%
dd-ls3 -65.6533 -65.7306 yes 100.00%
dd-ls4 -48.175 -73.3068 no 73.33%
fgmd inf -inf no
fm-bca -65.6533 -65.6533 yes 100.00%
fm -65.6533 -78.8603 yes 100.00%
fw 0 -inf no 0.00%
ga -65.6533 -inf yes 100.00%
hbp -65.6533 -66.02 yes 100.00%
ipfps -65.6533 -inf yes 100.00%
ipfpu -65.6533 -inf yes 100.00%
lsm -62.4453 -inf no 93.33%
mp -65.6533 -65.6533 yes 100.00%
mp-fw -65.6533 -65.6533 yes 100.00%
mpm -60.8575 -inf no 90.00%
mp-mcf -65.6533 -65.6533 yes 100.00%
pm -52.8425 -inf no 80.00%
rrwm -65.6533 -inf yes 100.00%
sm -65.6533 -inf yes 100.00%
smac -65.6533 -inf yes 100.00%

Run time 10s

method value bound optimal accuracy
dd-ls0 -65.6533 -65.658 yes 100.00%
dd-ls3 -65.6533 -65.6539 yes 100.00%
dd-ls4 -65.6533 -65.854 yes 100.00%
fgmd -65.6533 -inf yes 100.00%
fm-bca -65.6533 -65.6533 yes 100.00%
fm -65.6533 -78.8603 yes 100.00%
fw 0 -inf no 0.00%
ga -65.6533 -inf yes 100.00%
hbp -65.6533 -66.02 yes 100.00%
ipfps -65.6533 -inf yes 100.00%
ipfpu -65.6533 -inf yes 100.00%
lsm -62.4453 -inf no 93.33%
mp -65.6533 -65.6533 yes 100.00%
mp-fw -65.6533 -65.6533 yes 100.00%
mpm -60.8575 -inf no 90.00%
mp-mcf -65.6533 -65.6533 yes 100.00%
pm -52.8425 -inf no 80.00%
rrwm -65.6533 -inf yes 100.00%
sm -65.6533 -inf yes 100.00%
smac -65.6533 -inf yes 100.00%

Run time 100s

method value bound optimal accuracy
dd-ls0 -65.6533 -65.658 yes 100.00%
dd-ls3 -65.6533 -65.6539 yes 100.00%
dd-ls4 -65.6533 -65.6649 yes 100.00%
fgmd -65.6533 -inf yes 100.00%
fm-bca -65.6533 -65.6533 yes 100.00%
fm -65.6533 -78.8603 yes 100.00%
fw 0 -inf no 0.00%
ga -65.6533 -inf yes 100.00%
hbp -65.6533 -66.02 yes 100.00%
ipfps -65.6533 -inf yes 100.00%
ipfpu -65.6533 -inf yes 100.00%
lsm -62.4453 -inf no 93.33%
mp -65.6533 -65.6533 yes 100.00%
mp-fw -65.6533 -65.6533 yes 100.00%
mpm -60.8575 -inf no 90.00%
mp-mcf -65.6533 -65.6533 yes 100.00%
pm -52.8425 -inf no 80.00%
rrwm -65.6533 -inf yes 100.00%
sm -65.6533 -inf yes 100.00%
smac -65.6533 -inf yes 100.00%

Run time 300s

method value bound optimal accuracy
dd-ls0 -65.6533 -65.658 yes 100.00%
dd-ls3 -65.6533 -65.6539 yes 100.00%
dd-ls4 -65.6533 -65.6649 yes 100.00%
fgmd -65.6533 -inf yes 100.00%
fm-bca -65.6533 -65.6533 yes 100.00%
fm -65.6533 -78.8603 yes 100.00%
fw 0 -inf no 0.00%
ga -65.6533 -inf yes 100.00%
hbp -65.6533 -66.02 yes 100.00%
ipfps -65.6533 -inf yes 100.00%
ipfpu -65.6533 -inf yes 100.00%
lsm -62.4453 -inf no 93.33%
mp -65.6533 -65.6533 yes 100.00%
mp-fw -65.6533 -65.6533 yes 100.00%
mpm -60.8575 -inf no 90.00%
mp-mcf -65.6533 -65.6533 yes 100.00%
pm -52.8425 -inf no 80.00%
rrwm -65.6533 -inf yes 100.00%
sm -65.6533 -inf yes 100.00%
smac -65.6533 -inf yes 100.00%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: