A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse30”

This page shows the benchmarks results for the dataset instance “house-sparse30”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -65.0575.

Run time 1s

method value bound optimal accuracy
dd-ls0 -65.0575 -65.0739 yes 100.00%
dd-ls3 -48.9874 -66.2078 no 80.00%
dd-ls4 -49.7224 -71.3149 no 83.33%
fgmd inf -inf no
fm-bca -65.0575 -65.0575 yes 100.00%
fm -65.0575 -78.8145 yes 100.00%
fw 0 -inf no 0.00%
ga -65.0575 -inf yes 100.00%
hbp -65.0575 -65.4783 yes 100.00%
ipfps -65.0575 -inf yes 100.00%
ipfpu -65.0575 -inf yes 100.00%
lsm -61.8604 -inf no 93.33%
mp -65.0575 -65.0575 yes 100.00%
mp-fw -65.0575 -65.0575 yes 100.00%
mpm -60.4724 -inf no 90.00%
mp-mcf -65.0575 -65.0575 yes 100.00%
pm -52.3147 -inf no 80.00%
rrwm -65.0575 -inf yes 100.00%
sm -65.0575 -inf yes 100.00%
smac -12.2656 -inf no 0.00%

Run time 10s

method value bound optimal accuracy
dd-ls0 -65.0575 -65.0739 yes 100.00%
dd-ls3 -65.0575 -65.0602 yes 100.00%
dd-ls4 -65.0575 -65.0599 yes 100.00%
fgmd -65.0575 -inf yes 100.00%
fm-bca -65.0575 -65.0575 yes 100.00%
fm -65.0575 -78.8145 yes 100.00%
fw 0 -inf no 0.00%
ga -65.0575 -inf yes 100.00%
hbp -65.0575 -65.4783 yes 100.00%
ipfps -65.0575 -inf yes 100.00%
ipfpu -65.0575 -inf yes 100.00%
lsm -61.8604 -inf no 93.33%
mp -65.0575 -65.0575 yes 100.00%
mp-fw -65.0575 -65.0575 yes 100.00%
mpm -60.4724 -inf no 90.00%
mp-mcf -65.0575 -65.0575 yes 100.00%
pm -52.3147 -inf no 80.00%
rrwm -65.0575 -inf yes 100.00%
sm -65.0575 -inf yes 100.00%
smac -12.2656 -inf no 0.00%

Run time 100s

method value bound optimal accuracy
dd-ls0 -65.0575 -65.0739 yes 100.00%
dd-ls3 -65.0575 -65.0602 yes 100.00%
dd-ls4 -65.0575 -65.0599 yes 100.00%
fgmd -65.0575 -inf yes 100.00%
fm-bca -65.0575 -65.0575 yes 100.00%
fm -65.0575 -78.8145 yes 100.00%
fw 0 -inf no 0.00%
ga -65.0575 -inf yes 100.00%
hbp -65.0575 -65.4783 yes 100.00%
ipfps -65.0575 -inf yes 100.00%
ipfpu -65.0575 -inf yes 100.00%
lsm -61.8604 -inf no 93.33%
mp -65.0575 -65.0575 yes 100.00%
mp-fw -65.0575 -65.0575 yes 100.00%
mpm -60.4724 -inf no 90.00%
mp-mcf -65.0575 -65.0575 yes 100.00%
pm -52.3147 -inf no 80.00%
rrwm -65.0575 -inf yes 100.00%
sm -65.0575 -inf yes 100.00%
smac -12.2656 -inf no 0.00%

Run time 300s

method value bound optimal accuracy
dd-ls0 -65.0575 -65.0739 yes 100.00%
dd-ls3 -65.0575 -65.0602 yes 100.00%
dd-ls4 -65.0575 -65.0599 yes 100.00%
fgmd -65.0575 -inf yes 100.00%
fm-bca -65.0575 -65.0575 yes 100.00%
fm -65.0575 -78.8145 yes 100.00%
fw 0 -inf no 0.00%
ga -65.0575 -inf yes 100.00%
hbp -65.0575 -65.4783 yes 100.00%
ipfps -65.0575 -inf yes 100.00%
ipfpu -65.0575 -inf yes 100.00%
lsm -61.8604 -inf no 93.33%
mp -65.0575 -65.0575 yes 100.00%
mp-fw -65.0575 -65.0575 yes 100.00%
mpm -60.4724 -inf no 90.00%
mp-mcf -65.0575 -65.0575 yes 100.00%
pm -52.3147 -inf no 80.00%
rrwm -65.0575 -inf yes 100.00%
sm -65.0575 -inf yes 100.00%
smac -12.2656 -inf no 0.00%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: