A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse25”

This page shows the benchmarks results for the dataset instance “house-sparse25”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -65.361.

Run time 1s

method value bound optimal accuracy
dd-ls0 -65.361 -65.3692 yes 100.00%
dd-ls3 -65.361 -65.3623 yes 100.00%
dd-ls4 -48.8512 -71.0774 no 76.67%
fgmd inf -inf no
fm-bca -65.361 -65.361 yes 100.00%
fm -65.361 -78.8412 yes 100.00%
fw 0 -inf no 0.00%
ga -65.361 -inf yes 100.00%
hbp -65.361 -65.7331 yes 100.00%
ipfps -65.361 -inf yes 100.00%
ipfpu -65.361 -inf yes 100.00%
lsm -62.1586 -inf no 93.33%
mp -65.361 -65.361 yes 100.00%
mp-fw -65.361 -65.361 yes 100.00%
mpm -60.6365 -inf no 90.00%
mp-mcf -65.361 -65.361 yes 100.00%
pm -52.5857 -inf no 80.00%
rrwm -65.361 -inf yes 100.00%
sm -65.361 -inf yes 100.00%
smac -10.5747 -inf no 0.00%

Run time 10s

method value bound optimal accuracy
dd-ls0 -65.361 -65.3692 yes 100.00%
dd-ls3 -65.361 -65.3623 yes 100.00%
dd-ls4 -65.361 -65.3718 yes 100.00%
fgmd -65.361 -inf yes 100.00%
fm-bca -65.361 -65.361 yes 100.00%
fm -65.361 -78.8412 yes 100.00%
fw 0 -inf no 0.00%
ga -65.361 -inf yes 100.00%
hbp -65.361 -65.7331 yes 100.00%
ipfps -65.361 -inf yes 100.00%
ipfpu -65.361 -inf yes 100.00%
lsm -62.1586 -inf no 93.33%
mp -65.361 -65.361 yes 100.00%
mp-fw -65.361 -65.361 yes 100.00%
mpm -60.6365 -inf no 90.00%
mp-mcf -65.361 -65.361 yes 100.00%
pm -52.5857 -inf no 80.00%
rrwm -65.361 -inf yes 100.00%
sm -65.361 -inf yes 100.00%
smac -10.5747 -inf no 0.00%

Run time 100s

method value bound optimal accuracy
dd-ls0 -65.361 -65.3692 yes 100.00%
dd-ls3 -65.361 -65.3623 yes 100.00%
dd-ls4 -65.361 -65.3718 yes 100.00%
fgmd -65.361 -inf yes 100.00%
fm-bca -65.361 -65.361 yes 100.00%
fm -65.361 -78.8412 yes 100.00%
fw 0 -inf no 0.00%
ga -65.361 -inf yes 100.00%
hbp -65.361 -65.7331 yes 100.00%
ipfps -65.361 -inf yes 100.00%
ipfpu -65.361 -inf yes 100.00%
lsm -62.1586 -inf no 93.33%
mp -65.361 -65.361 yes 100.00%
mp-fw -65.361 -65.361 yes 100.00%
mpm -60.6365 -inf no 90.00%
mp-mcf -65.361 -65.361 yes 100.00%
pm -52.5857 -inf no 80.00%
rrwm -65.361 -inf yes 100.00%
sm -65.361 -inf yes 100.00%
smac -10.5747 -inf no 0.00%

Run time 300s

method value bound optimal accuracy
dd-ls0 -65.361 -65.3692 yes 100.00%
dd-ls3 -65.361 -65.3623 yes 100.00%
dd-ls4 -65.361 -65.3718 yes 100.00%
fgmd -65.361 -inf yes 100.00%
fm-bca -65.361 -65.361 yes 100.00%
fm -65.361 -78.8412 yes 100.00%
fw 0 -inf no 0.00%
ga -65.361 -inf yes 100.00%
hbp -65.361 -65.7331 yes 100.00%
ipfps -65.361 -inf yes 100.00%
ipfpu -65.361 -inf yes 100.00%
lsm -62.1586 -inf no 93.33%
mp -65.361 -65.361 yes 100.00%
mp-fw -65.361 -65.361 yes 100.00%
mpm -60.6365 -inf no 90.00%
mp-mcf -65.361 -65.361 yes 100.00%
pm -52.5857 -inf no 80.00%
rrwm -65.361 -inf yes 100.00%
sm -65.361 -inf yes 100.00%
smac -10.5747 -inf no 0.00%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: