A Comparative Study of Graph Matching Algorithms in Computer Vision

Benchmark Results for “house-sparse2”

This page shows the benchmarks results for the dataset instance “house-sparse2”. We consider solutions as optimal if the objective value is within a 0.1% range of the known optimum -67.1526.

Run time 1s

method value bound optimal accuracy
dd-ls0 -67.1526 -67.1585 yes 100.00%
dd-ls3 -67.1526 -67.1622 yes 100.00%
dd-ls4 -67.1526 -71.6468 yes 100.00%
fgmd inf -inf no
fm-bca -67.1526 -67.1526 yes 100.00%
fm -67.1526 -78.748 yes 100.00%
fw 0 -inf no 0.00%
ga -67.1526 -inf yes 100.00%
hbp -67.1526 -67.2062 yes 100.00%
ipfps -67.1526 -inf yes 100.00%
ipfpu -67.1526 -inf yes 100.00%
lsm -67.1526 -inf yes 100.00%
mp -67.1526 -67.1526 yes 100.00%
mp-fw -67.1526 -67.1526 yes 100.00%
mpm -62.5208 -inf no 90.00%
mp-mcf -67.1526 -67.1526 yes 100.00%
pm -54.119 -inf no 83.33%
rrwm -67.1526 -inf yes 100.00%
sm -67.1526 -inf yes 100.00%
smac -10.5411 -inf no 0.00%

Run time 10s

method value bound optimal accuracy
dd-ls0 -67.1526 -67.1585 yes 100.00%
dd-ls3 -67.1526 -67.1622 yes 100.00%
dd-ls4 -67.1526 -67.1537 yes 100.00%
fgmd -67.1526 -inf yes 100.00%
fm-bca -67.1526 -67.1526 yes 100.00%
fm -67.1526 -78.748 yes 100.00%
fw 0 -inf no 0.00%
ga -67.1526 -inf yes 100.00%
hbp -67.1526 -67.2062 yes 100.00%
ipfps -67.1526 -inf yes 100.00%
ipfpu -67.1526 -inf yes 100.00%
lsm -67.1526 -inf yes 100.00%
mp -67.1526 -67.1526 yes 100.00%
mp-fw -67.1526 -67.1526 yes 100.00%
mpm -62.5208 -inf no 90.00%
mp-mcf -67.1526 -67.1526 yes 100.00%
pm -54.119 -inf no 83.33%
rrwm -67.1526 -inf yes 100.00%
sm -67.1526 -inf yes 100.00%
smac -10.5411 -inf no 0.00%

Run time 100s

method value bound optimal accuracy
dd-ls0 -67.1526 -67.1585 yes 100.00%
dd-ls3 -67.1526 -67.1622 yes 100.00%
dd-ls4 -67.1526 -67.1537 yes 100.00%
fgmd -67.1526 -inf yes 100.00%
fm-bca -67.1526 -67.1526 yes 100.00%
fm -67.1526 -78.748 yes 100.00%
fw 0 -inf no 0.00%
ga -67.1526 -inf yes 100.00%
hbp -67.1526 -67.2062 yes 100.00%
ipfps -67.1526 -inf yes 100.00%
ipfpu -67.1526 -inf yes 100.00%
lsm -67.1526 -inf yes 100.00%
mp -67.1526 -67.1526 yes 100.00%
mp-fw -67.1526 -67.1526 yes 100.00%
mpm -62.5208 -inf no 90.00%
mp-mcf -67.1526 -67.1526 yes 100.00%
pm -54.119 -inf no 83.33%
rrwm -67.1526 -inf yes 100.00%
sm -67.1526 -inf yes 100.00%
smac -10.5411 -inf no 0.00%

Run time 300s

method value bound optimal accuracy
dd-ls0 -67.1526 -67.1585 yes 100.00%
dd-ls3 -67.1526 -67.1622 yes 100.00%
dd-ls4 -67.1526 -67.1537 yes 100.00%
fgmd -67.1526 -inf yes 100.00%
fm-bca -67.1526 -67.1526 yes 100.00%
fm -67.1526 -78.748 yes 100.00%
fw 0 -inf no 0.00%
ga -67.1526 -inf yes 100.00%
hbp -67.1526 -67.2062 yes 100.00%
ipfps -67.1526 -inf yes 100.00%
ipfpu -67.1526 -inf yes 100.00%
lsm -67.1526 -inf yes 100.00%
mp -67.1526 -67.1526 yes 100.00%
mp-fw -67.1526 -67.1526 yes 100.00%
mpm -62.5208 -inf no 90.00%
mp-mcf -67.1526 -67.1526 yes 100.00%
pm -54.119 -inf no 83.33%
rrwm -67.1526 -inf yes 100.00%
sm -67.1526 -inf yes 100.00%
smac -10.5411 -inf no 0.00%

Other Results for this Dataset

Accumulated results for whole dataset: house-sparse

Results for individual instances of the dataset: